CHAPTER 5 MATLAB EXERCISES

- 1. Use the MATLAB command norm(v) to find
 - (a) the length of the vector $\mathbf{v} = (0, -2, 1, 4, -2)$.
 - (b) a unit vector in the direction of $\mathbf{v} = (-3, 2, 4, -5, 0, 1)$.
 - (c) the distance between the vectors $\mathbf{u} = (0, 2, 2, -3)$ and $\mathbf{v} = (-4, 7, 10, 1)$.
- 2. The dot product of the vectors (written as columns)

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} \quad \text{and} \quad \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

is given by the matrix product

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v} = \begin{bmatrix} u_1 & u_2 & \dots & u_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}.$$

Hence you can compute the dot product of \mathbf{u} and \mathbf{v} simply by multiplying the transpose of \mathbf{u} times the vector \mathbf{v} . Let $\mathbf{u}=(2,-5,0,4,8),\ \mathbf{v}=(0,-3,2,-1,1)$ and $\mathbf{w}=(1,-1,0,0,7),$ and use MATLAB to find the following.

- (a) **u v**
- (b) $(\mathbf{u} \cdot \mathbf{v})\mathbf{w}$
- (c) $\mathbf{u} \cdot (2\mathbf{v} 3\mathbf{w})$
- (d) $\mathbf{v} \cdot \mathbf{v}$ and $||\mathbf{v}||^2$
- 3. The angle θ between two nonzero vectors is given by

$$\cos\theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}.$$

Use MATLAB to find the angle between $\mathbf{u}=(-3,4,0)$ and $\mathbf{v}=(1,1,4)$. (Hint: use the built-in inverse cosine function, **acos**).

4. You can find the orthogonal projection of the column vector \mathbf{x} onto the vector \mathbf{y} by computing

$$\frac{\mathbf{x}^T\mathbf{y}}{\mathbf{y}^T\mathbf{y}}\mathbf{y}.$$

Use MATLAB to find the following projections of x onto y.

- (a) $\mathbf{x} = (3, 1, 2), \ \mathbf{y} = (7, 1, -2)$
- (b) $\mathbf{x} = (1, 1, 1), \ \mathbf{y} = (-1, 1, 1)$
- (c) $\mathbf{x} = (0, 1, 3, -3), \ \mathbf{y} = (4, 0, 0, 1)$
- 5. Use the MATLAB command cross(u, v) to find the cross products of the following vectors.
 - (a) $\mathbf{u} = (1, -2, 1), \mathbf{v} = (3, 1, -2)$
 - (b) $\mathbf{u} = (0, 1, -2), \mathbf{v} = (-5, 14, 6)$

- **6.** Let $\mathbf{u} = (-3, 2, 4)$, $\mathbf{v} = (5, 0, -7)$, and $\mathbf{w} = (-1, -5, 6)$. Use MATLAB to illustrate the following properties of the cross product.
 - (a) $\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$
 - (b) $\mathbf{u} \times \mathbf{u} = \mathbf{0}$
 - (c) $\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) + (\mathbf{u} \times \mathbf{w})$
 - (d) $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$
- 7. The MATLAB command A\b finds the least squares solution to the linear system of equations $A\mathbf{x} = \mathbf{b}$. For example, if

$$A = \begin{bmatrix} 0 & 2 \\ 3 & 0 \\ 1 & 0 \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix},$$

then the command A\b gives the answer

$$\begin{bmatrix} 0.6000 \\ 0.5000 \end{bmatrix}$$

Use MATLAB to solve the least squares problem $A\mathbf{x} = \mathbf{b}$ for the given matrices.

(a)
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 3 \\ 1 & 4 \end{bmatrix}$$
 $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ (b) $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 3 \\ 1 & 4 \end{bmatrix}$ $\mathbf{b} = \begin{bmatrix} 0 \\ 2 \\ 1 \\ 1 \end{bmatrix}$
(c) $A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 4 & 3 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 2 & -1 \end{bmatrix}$ $\mathbf{b} = \begin{bmatrix} -1 \\ 2 \\ -1 \\ 0 \\ 1 \end{bmatrix}$

(c)
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 4 & 3 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 2 & -1 \end{bmatrix}$$
 $\mathbf{b} = \begin{bmatrix} -1 \\ 2 \\ -1 \\ 0 \\ 1 \end{bmatrix}$

8. Use MATLAB to find the four fundamental subspaces of the following matrices.

(a)
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 1 \\ 3 \\ 1 \\ 0 \end{bmatrix}$$

(a)
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$
(b)
$$\begin{bmatrix} 1 & 2 \\ 3 & -1 \\ 1 & 4 \\ 0 & 1 \end{bmatrix}$$
(c)
$$\begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 1 & 1 & -1 \\ 0 & 2 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$
(d)
$$\begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 3 & -2 & -1 & 0 \\ 4 & 1 & -1 & 0 \\ 5 & 4 & 3 & 2 \end{bmatrix}$$